ジェネレーティブ・アート系の本いろいろ
今日 Amazon のおすすめ商品にこげな本ば出てきたとです。
この "Generative Art" なる書籍は、Matt Pearson という人による、Processing の本のようで、副題で「Processing を使った実用ガイド」と謳われています。
で、いろいろ検索していたら、この本の公式らしきサイトを見つけました。
2008年から2010年の間に作った作品が100個展示してあるもよう。各ページへ飛ぶと、それぞれアプレットが起動して、実際に動きます。
いやージェネレーティブ・アートって本っ当にイイですねー。
Bubble Harp のパチモン
先だってネットをフラフラ彷徨っていたら、CreativeApplications.Net でボロノイ図をモチーフにした "Bubble Harp" という iPad、iPhone アプリについての記事を見つけました。
これって、いつぞや wonderfl に投稿した "Voronoi Letter" を改造すれば割と簡単に実装できんじゃね? ってなワケで、ちこっとコードを組んでみましたよ。
で、結果が↓
Bubble Harp のパチモン – wonderfl build flash online
反転(3)
何で今まで反転の学習をしてきたのかというと、私がやりたいことが反転によって可能になる、ということを知ったからなんでした。
やりたいことの一つは↓
forked from: 反転の「見える化」(シュタイナー・チェーン版) – wonderfl build flash online
反転(2)
「平面図形の幾何学」という本のP39によると、反転には以下の4つの性質があるとのことでした。
- O を通る直線を、それ自身に写す
- O を通らない直線を、O を通る円に写す
- O を通る円を、O を通らない直線に写す
- O を通らない円を、O を通らない円に写す
反転(1)
これから書き連ねていくことは大ポカありまくりの可能性大。間違いを発見したときは生暖かい気持ちで指摘してくださると幸いです。理系なのに数学知らずで申し訳ない。
とりあえず2次元平面では、対称ってのは「線対称」と「回転対称」の2種類に分類できるって考えてればいいのかなー初学者としては。
そして、回転対称の中でも180度で同じ図形に戻るものを特に点対称と呼ぶ、と。
また、線対称に目を向けてみると、対称軸が直線の場合と曲線の場合が考えられるってことで良いのかな。
対称軸が直線の場合が算数レベルで習う、いわゆる線対称。そして対称軸が円の場合は「反転」と呼ぶ。そんな感じ?
